Deep drawing stamping process and application analysis of different materials!
Deep drawing stamping is a special stamping method. The principle is to apply external force to the sheet, strip, pipe and profile by press and die to make plastic deformation or separation, so as to obtain the workpiece of the desired shape and size (Stamping). However, deep drawing stamping is still quite different from common continuous stamping and metal blanks.

The first is the mold. The mold consists of a punch and a die. One station has a pair of molds, generally up to 18 stations. When designing the mold, it is usually considered to use all the stations, which makes the molding of each step more stable. Out of the product is better

Followed by the strip, the deep drawing process without conveyor. The product is stored in the mold separately. It can be transferred between the stations by the built-in robot. It can be reversed arbitrarily, which allows us to form relatively complex shapes. Such as: thread, side holes, side grooves, reverse stretching of the end face, etc., can produce a variety of products.
Compared with machined parts, cast parts, molded parts and ordinary stamping metal parts, it has obvious advantages of saving material cost, reducing waste, reducing assembly cost and time, and improving the product’s external structure to meet requirements and retain its own strength. The use of raw materials minimizes scrap rates.

Analysis of deep drawing applications with different materials
1. Low carbon steel deep drawing stamping
A. Low carbon steel Deep drawing Material characteristics:
Excellent formability (depending on material grade), high strength, light weight, cost-effective than other stretch materials, stable dimensional stability, low corrosion resistance, and need for post-treatment protection such as electroplating. Commonly used in various parts of automotive manufacturing, especially high-strength structural parts.
B. Low carbon steel material Impact on the stretch stamping process:
Rich in material procurement resources
Low tonnage machines are available (depending on material grade)
Good dimensional stability after molding
Particularly suitable for welding
There are different coatings in the raw material category, which eliminates the need for subsequent surface treatments such as plating
The molded product has a certain shelf life, depending on its corrosion resistance.

C. Our commonly used low carbon steel materials in deep drawing process
1008 low carbon steel HSLA Grade 50 low carbon steel
1010 low carbon steel HSLA Grade 80 low carbon steel
DC03 / DC04 B340LA / B410LA
SPCC / SPCD / SPCE
2, Stainless steel deep stamping

A. Stainless steel Material deep drawing characteristics:
High strength, light weight, high corrosion resistance, suitable for heat treatment, good wear resistance and no need for plating protection.
Commonly used in fuel supply systems, brake systems, exhaust systems, oxygen sensors and decorative components in automotive manufacturing.
B. Stainless steel Impact on the Deep drawing stamping process:
Large tonnage machines are required compared to other materials
Larger wear on the mold during stretching
Material prices are more expensive
Good dimensional stability after molding (/-0.02mm)
Hardening and resilience of the material during stretching
It is difficult to form the material during stretching and it is difficult to control the wall thickness of the product. It requires an experienced molder.
C. Our commonly used stainless steel DEEP DRAWING materials:
304(L) stainless steel
305 stainless steel
310 stainless steel
316 stainless steel
410 stainless steel
430 stainless steel
3, Aluminum alloy DEEP DRAWING stamping

A. Aluminum Material characteristics with deep drawing
Light weight (about 1/3 of low carbon steel), high strength, non-magnetic, no rust, suitable for heat treatment, can be anodized to prevent corrosion.
It is commonly used in heat dissipation devices, energy storage devices (such as batteries), beverage containers and the pharmaceutical industry in automotive manufacturing and other industries.
B. Alu material Impact on the deep stamping process:
Compared with other materials, low-tonnage machines can
Larger wear on the mold during stretching
Good dimensional stability after molding (/-0.04mm)
Easy to form and low resilience
The material does not easily harden when stretched
Aluminum alloy deep drawing is achievable for forming inconsistent wall thicknesses
C. Our commonly used aluminum alloy materials for deep drawing
3003 aluminum alloy
5052 aluminum alloy
6061 aluminum alloy
4. Copper alloy deep stamping

A. Copper Material characteristics for deep drawing:
Anti-corrosion, easy oxidation (surface discoloration and stain), expensive and unstable, easy to weld.
B. Copper material Impact in the deep stamping process:
Machine tonnage similar to mild steel
Material ductility is very good
Due to the high price, the utilization of materials and the recycling of waste are very important.
Good dimensional stability after molding (/-0.04mm)
For alloys with inconsistent wall thickness, copper alloy stretching is achievable
C. Our commonly used copper alloy materials for deep drawing
C22000 copper alloy
C26000 copper alloy
C28000 copper alloy
C52100 copper alloy
Soucing from: https://sipxmach.com/deep-drawing/